nndm library

Andrés Felipe Gómez, Jose Miguel Muñoz Arias, Esteban Vásque

May 28, 2022

CONTENTS:

1	ReadFileBase	1
2	ReadLhe	3
3	ReadRoot	5
4	FilesManipulator	7
5	Indices and tables	9
Index		11

ONE

READFILEBASE

```
class nndm_library.ReadFileBase(path, recursive=False, ext='.txt', relabel_events=True)
```

Class to read the labeled data coming in a format like the following:

data1 data2 data3

v11 v12 v13

. . .

. . .

. . .

vn1 vn2 vn3

where data1, data2, ... respresent names and vij, a value in the given i row and column dataj.

Parameters

- **path** (*string*) the direction to the file containing all the events information.
- recursive (bool) read all the .lhe files found in all paths inside a given files_dir
- ext (str) extension of the files to read
- **relabel_events** (*bool*) there is an id for each possible event. For instance a collision have an id for it and two sub ids for the particle that interact in it. When relabel_events is True, the values of id are associated unequivocally with each event.

Variables

- data dataframe with the read events
- files_dir directory with the name of the files read and its id

add_angle(axes=['px', 'py', 'pz'], angle_axis='pz')

Calculate the angle of the particles starting from a list of the form [px, py, pz]. This with respect to the "axis" element.

extract_params_from_path()

 $\label{eq:linear} Format is as follows: {particle_name}_{param1}_{value1}_{param2}_{value2}_{param3}_{value3}*. Ihe An example would be eta_decay_events_mk_0.38_eps2_5.404557191441203e-07. Ihe.$

Returns dictionary with all extracted data

READLHE

class nndm_library.**ReadLhe**(*path*, *particle_ids=None*, *var_of_interest=None*, *outgoing=False*, *recursive=False*, *relabel_events=True*, *verbose=1*)

Class to read the data coming in lhe format. By default it will read all the particles. Filters used apply to the such default data.

Parameters

- **path** (*string*) the direction to the file containing all the events information.
- **partcile_ids** (*list of integers*) ids of the particles to extract from the file according to the pdg, By default: None, which means exctract all the particles.
- **var_of_interest** (*list of strings*) names of the variables to extract from the lhe. eg. ["e","angle"], ["e","px","py"] By default: None, which means exctract all the variables.
- **outgoing** (*bool*) filtrate to obtain all the outgoing particles
- **files_dir** (*string*) directory where the files are to be found
- recursive (bool) read all the .lhe files found in all paths inside a given files_dir
- verbose (bool) show progress reading all the .lhe files

Variables

- **data** dataframe with the read events
- ${\tt files_dir}$ directory with the name of the files read and its id

add_angle(axes=['px', 'py', 'pz'], angle_axis='pz')

Calculate the angle of the particles starting from a list of the form [px, py, pz]. This with respect to the "axis" element.

extract_params_from_path()

 $\label{eq:linear} Format is as follows: {particle_name}_{param1}_{value1}_{param2}_{value2}_{param3}_{value3}*. Ihe An example would be eta_decay_events_mk_0.38_eps2_5.404557191441203e-07. Ihe.$

Returns dictionary with all extracted data

THREE

READROOT

Class to read the labeled data coming in ROOT format. By default it assumes values for output_base_tree, pattern_output, output_base_middle_branch, and leafs. This is for a fast reading.

Parameters

- **path** (*str*) the direction to the root file(s)
- **output_base_name** (*str*) Name bas of the first node of the tree that has the data. For instance, if the base name is treeout, there options could be treeout1, treeout2,, treeoutN.
- **pattern_output** (*str*) The idea is this parameter define a methodology to choose from the possible first nodes that have a given output_base_name. As an example, first would choose treeoout1 in the example before.
- **output_base_middle_branch** (*str*) middle branch that goes after the selected first node chosen by the output pattern. If this variable is "e/out", following the example the tree to consult at the moment would be treeout1/e/out/.
- **leafs** (*list of strings*) what are the leafs to exaplore in the actual branch. If out.a is the ouput name for the a momenta, giving a list [out.x, out.y] will give the data to consult. That is, treeout1/e/out/out.x and treeout1/e/out/out.y
- **relabel_events** (*bool*) there is an id for each possible event. For instance a collision have an id for it and two sub ids for the particle that interact in it. When relabel_events is True, the values of id are associated unequivocally with each event.

Variables

- data dataframe with the read events
- files_dir directory with the name of the files read and its id

add_angle(axes=['px', 'py', 'pz'], angle_axis='pz')

Calculate the angle of the particles starting from a list of the form [px, py, pz]. This with respect to the "axis" element.

extract_params_from_path()

Format is as follows: {particle_name}_{param1}_{value1}_{param2}_{value2}_{param3}_{value3}*.lhe An example would be eta_decay_events_mk_0.38_eps2_5.404557191441203e-07.lhe.

Returns dictionary with all extracted data

FILESMANIPULATOR

General methods intended for the manipulation of the files and its names in a given directory(ies).

Parameters

- **path** (*string*) the direction to the file containing all the events information.
- partcile_ids ids of the particles to extract from the file according to the pdg,

By default: None, which means exctract all the particles. :type partcile_ids: list of integers

Parameters

- **var_of_interest** (*list of strings*) names of the variables to extract from the lhe. eg. ["e","angle"], ["e","px","py"] By default: None, which means exctract all the variables.
- **outgoing** (*bool*) filtrate to obtain all the outgoing particles
- Variables scan it is a dictionary with the values of the benchmark points, each with its respective result sets of values of the variable of interest (var_of_interest). Note that the benchmark points are read from the name. Format is as follows: {particle_name}_{param1}_{value1}_{param2}_{value2}_{param3}_{value3}*.lhe An example would be eta_decay_events_mk_0.38_eps2_5.404557191441203e-07.lhe. Here we have pictorical description of the scan:

First, a list of ints is [int, int, ...] == [(int)]. So a list of a list of floats is: [[(float)], [(float)], ...] == [([(float)])] {id: [(int)], typ: [(str)], mk: [(float)], eps2: [(float)], px: [[(float)], [(float)], ...], py: [([(float)])], pz: [([(float)])] } Note that momentum and energy are a list of arrays, where each array correspons to a param point

FIVE

INDICES AND TABLES

- genindex
- modindex
- search

INDEX

А

add_angle() (nndm_library.ReadFileBase method), 1
add_angle() (nndm_library.ReadLhe method), 3
add_angle() (nndm_library.ReadRoot method), 5

Е

F

FilesManipulator (class in nndm_library), 7

R

ReadFileBase (class in nndm_library), 1
ReadLhe (class in nndm_library), 3
ReadRoot (class in nndm_library), 5